
An introduction to cross-platform hybrid development
for architects and app development leaders.

Hybrid vs.
Native

eBook

ionicframework.com/resources

https://ionicframework.com/resources

1

The mobile delivery
gap
Back in the early days of mobile, there was really only one way to give
your users the performance and features they expected. You had to
use each platform’s native toolset.

Of course, that came with real and measurable
tradeoffs:

• Building in parallel for each mobile platform

• Managing multiple codebases

• Hiring and retaining highly specialized and
costly native developers

Meanwhile, demand for mobile experiences
continues to grow exponentially. By 2022, 70% of
all enterprise software interactions are expected
to occur on mobile devices.1

Given the time and cost of traditional native
development, it’s no surprise that many
development teams are struggling to keep up with
this demand.

Thankfully, times have changed. As mobile
and web technology have evolved, hybrid has
emerged as a viable alternative to native. Many
are now looking at hybrid development as a way
to simplify and speed up app creation. Let’s take a
look at the reasons for this shift.

Demand for mobile
experiences is

growing 5x faster
than internal IT

teams can deliver.

1 Market Guide for Mobile Application Testing Services - Gartner, June 2017

gartner

The choice to go
hybrid
The growing adoption of hybrid is evident in a recent Forrester
survey that found two-thirds of developers are choosing a cross-
platform or web-based approach over native tools2. Meanwhile, top
brands like Target, Nationwide, and Southwest Airlines have chosen
a hybrid approach over native to power apps for their customers and
employees.

2 2 Native, Web, And Cross-Platform Mobile Apps All Have Their Place - April 5th 2016 Forrester

amtrak app

THE CHOICE TO GO HYBRID

https://ionicframework.com/enterprise/customers
https://ionicframework.com/enterprise/customers

3

The top reasons for making the switch from native to hybrid, based on
independent research and testimonials, are:

3 Ibid.

speed
Building for multiple platforms from a single codebase often makes
delivering cross-platform apps 2-3x faster than native.

efficiency
Reduced development times, and the avoided costs of hiring and
retaining specialized native talent, can save teams 60% or more
compared to native3.

Put together, the advantages of
hybrid have helped centralized
development teams close the gap
and better satisfy the demand for
mobile apps for customers and
internal employees.

design & ux consistency
With one codebase running on desktop, mobile, and web, hybrid apps
provide better design and UX consistency across channels.

skillset
Hybrid gives web developers and businesses with in-house web teams
the tools to build powerful mobile apps using their existing skills and
talent.

THE CHOICE TO GO HYBRID

4

What is a hybrid
app?
Hybrid apps are native apps. They’re downloaded from the platform’s
app store or marketplace and offer the same native features, offline
support, and hardware-based performance acceleration as any app
built with a native SDK.

WHAT IS A HYBRID APP?

5

The key difference is that hybrid apps are built using open web technologies
like HTML, CSS, and JavaScript, rather than the proprietary or specialized
languages used by iOS, Android, and others. That means anyone with a
modern web developer skill-set can begin building an app using the hybrid
approach.

Hybrid apps run in a full-screen browser, called a webview, that is invisible
to the user. Through customizable native plugins, they can access the native
features of specific mobile devices (such as the camera or touch ID), without
the core code being tied to that device.

That means cross-platform hybrid applications can run on any platform or
device, all from a single codebase, while still delivering native performance.

WHAT IS A HYBRID APP?

6

Comparing hybrid
vs. native
In the sections that follow, we’ll provide a one-to-one comparison of
hybrid vs. native, highlighting the pros and cons of each approach.

It’s important to keep in mind that the decision
to choose hybrid or native should be based
on the unique goals of your organization,
the circumstances of a given project, and
composition of your existing development team.

Of course, we’re betting big on the power of
the web and the promise and potential of cross-
platform hybrid development. But we understand
that individual circumstances should drive which
route you choose.

Hopefully, this comparison guide will give you
some useful tips to help you choose the right
approach for your next project. But keep in mind,
there’s often plenty of room to accommodate
different approaches in a single organization. It’s
not always an either-or decision.

7

Write once, run anywhere Use the talent you
already have

Deliver a great user
experience across
platforms

Build for the future

Why
hybrid?
Let’s take a look at each of these.

8

Write once, run
anywhere
Rarely is a mobile app only designed for a single platform.
Consumers, partners, and employees all have a choice of platforms
and devices.

WHY HYBRID? | WRITE ONCE, RUN ANYWHERE

9

Following the native approach, that means you need to build separate apps
for each mobile platform, and sometimes specific apps for tablets and
smartphones.

This is where hybrid development shines.

With a hybrid framework like Ionic, you can run your app on any platform or
device, all from a single codebase. Ionic also provides adaptive styling, so the
look-and-feel of your app isn’t one-size-fits-all. It automatically adapts to each
platform. And because hybrid technology is web-based, you can run your app
in any modern browser as a Progressive Web App, or PWA.

That means your users get a great experience across platforms and devices,
and you only have one codebase to worry about.

WHY HYBRID? | WRITE ONCE, RUN ANYWHERE

With a hybrid framework like
Ionic, you can run your app

on any platform or device.

10

Use the talent you
already have
The web developer community is about 10x greater in size than the
number of native mobile app developers, according to the latest
Stack Overflow survey. Many development teams already have
a deep bench of programmers who understand HTML, CSS and
JavaScript.

WHY HYBRID? | USE THE TALENT YOU ALREADY HAVE

According to the 2019 Stack Overflow Survey, less
than 7% of all developers cited Swift, Kotlin, or
Objective-C as familiar languages. In contrast, web
developers made up almost 70% of respondents.

70
% 7%W
eb

N
at

iv
e

iO
S

&
 A

nd
ro

id

11

Why not leverage the talent you already have in-house to build your next
mobile apps?

With a hybrid framework like Ionic, your existing web teams can build high-
performance apps that run on any platform or device, using the tools and
technology they already know and love.

That’s a lot easier than outsourcing development, or recruiting, training, and
hiring specialists. Plus, centralizing on a single skill set makes it much easier to
reassign teams when a project is finished—whether that’s a desktop web app
or another mobile project.

WHY HYBRID? | USE THE TALENT YOU ALREADY HAVE

12

Deliver the best UX
across platforms
The #1 mental health app, Sanvello, consistently delivers a high-
quality user experience to its 3M+ users, earning a 4.8 out of 5 rating
on the Apple App Stores.

WHY HYBRID? | DELIVER THE BEST UX ACROSS PLATFORMS

sanvello app

13

WHY HYBRID? | DELIVER THE BEST UX ACROSS PLATFORMS

Native advocates will claim that only a native approach can deliver the speed
and performance that you need to create a great user experience. That may
have been true five years ago, but today’s solutions offer the same hardware-
based performance acceleration as native apps. Ionic is committed to
providing a framework that is equal in performance to its native counterparts.

And as the Sanvello team found, user experience isn’t just about performance.
Simplifying the development process and consolidating onto a single
codebase means more time to add features, fewer potential defects, and more
time to fix bugs that find their way through.

Most importantly, users expect a seamless experience as they move across
platforms and devices. If your mobile app is completely out of sync with your
desktop or tablet app, that’s not a good experience. By leveraging the web
platform for both your mobile and desktop solutions, you will have a wider
shared codebase, that will give you that brand consistency and common user
experience.

4.8

 dale beerman, sanvello

On building a hybrid with Ionic

With over 3 million users

“ With hybrid, we can run our app across multiple
platforms from the get-go, so we can focus on
iterating features that are important to the product,
as opposed to getting mired in the intricacies of
native development. ”

14

Build for the future
Development organizations are tasked to build applications for the
future. Moving now to the web platform offers you richer, more
innovative options moving forward.

WHY HYBRID? | BUILD FOR THE FUTURE

15

The web represents the most stable and time-tested universal runtime in
the world.

And today, the web is powering a growing and diverse set of
applications — from traditional mobile and desktop apps to Progressive
Web Apps, wearables, and IoT devices.

Additionally, by choosing a hybrid framework based on open web
standards, you’ll future-proof your development strategy in some other
important ways. For example, the latest version of Ionic works with any
JS framework, including React, Vue, and Angular, so your teams can
continue to use the diverse set of tools and approaches they prefer—
today and tomorrow.

WHY HYBRID? | BUILD FOR THE FUTURE

The web represents the
most stable and time-tested

universal runtime in the world.

system overhead
The use of the webview may introduce a degree
of overhead compared to native. The abundance
of performance APIs and increasingly powerful
hardware have made this less of a factor
in recent years, but it’s still something to
consider. For most applications, the difference
in performance is hardly noticeable. But for
3D games and other performance-intensive
applications, a hybrid solution may not be the
best choice.

plugin management
Cross-platform solutions like Ionic — as well as
React Native and others — are able to access
nearly every native feature of a device, like
the camera or gyroscope, by using native
plugins that unlock native device features and
integrations using basic JavaScript. In a hybrid
app, open source Cordova and Capacitor
plugins are the most popular solution to this
problem. The use of these plugins does add
complexity to development. Ionic offers a
curated library of popular plugins known
as Ionic Native, with optional support and
maintenance for teams building mission critical
apps. Nonetheless, this is a factor to consider.

third-party dependence
Choosing a cross-platform approach means
you’re placing trust in the maker of the
framework vendor (whether it’s Ionic, React
Native, Xamarin, etc.) to keep up with the
latest and greatest native features and design
patterns of each mobile platform. While Ionic is
committed to keeping up with new Android and
iOS versions, there’s still a dependency any time
you choose something other than the native
SDK.

16

Drawbacks of
hybrid
Of course, hybrid applications are not without their drawbacks:

https://ionicframework.com/docs/native/

17

Why native?
Let’s explore the common reasons for choosing native.

Rich native libraryPerformance No third-party
dependencies

18

Benefits of native
development
Native is still the preferred approach for many mobile developers.
And there are some good reasons for that. While part of that is based
on the legacy of having few viable alternatives, native still has its
advantages today.

WHY NATIVE? | BENEFITS OF NATIVE DEVELOPMENT

performance
Native code is still faster than Javascript and HTML. This matters when
developers are looking to build demanding graphical applications such as
games and other intensive animation applications. Mobile browsers are
coming closer to bridging the gap for these types of intensive applications
using WebGL specification; however, native still has the advantage here.

19

rich native library
Using native SDKs allows the developer to access the latest features
specifically designed for those platforms, without the complexity of dealing
with native plugins. This is a great option if you’re already familiar with
native tools and languages and don’t want or need an additional layer of
abstraction.

no third-party dependencies
By building exclusively with a native SDKs, developers aren’t bound to
any third-party to keep up with support, and there’s not as much of a
dependency on open source communities like Cordova to keep up with the
latest features.

WHY NATIVE? | BENEFITS OF NATIVE DEVELOPMENT

20

Challenges of
native development
Here are the most frequently cited challenges associated with
native development:

longer development cycles
Native apps usually have longer development cycles, especially when
building for multiple platforms, which requires two or three different code
bases for iOS, Android and desktop. Each platform has its own nuances
which require specific changes, updates, and maintenance which bloat
the cost of an application and add development time. This creates a lot of
iterations within the development process in order to customize and test for
each platform, it also reduces your agility to launch your application or push
updates.

WHY NATIVE? | CHALLENGES OF NATIVE DEVELOPMENT

21

WHY NATIVE? | CHALLENGES OF NATIVE DEVELOPMENT

high development costs
Simply put, developing mobile applications natively can be expensive and
time-consuming, mostly driven by the time it takes to build for each platform,
along with the cost of hiring and retaining highly specialized native talent.

native talent hard to find
Finding and hiring iOS and Android developers is difficult, given that
less than 7% of all developers are versed in the necessary programming
languages. It’s also difficult to repurpose those developers for other projects
outside of mobile.

limited customization
Creating custom UI components to match your company’s design system or
pattern library can be more challenging with native components, because
you’re limited to the design patterns supported by each platform. And unlike
web components, native components can’t be shared outside of their native
platform, so you’ll need to maintain multiple UI libraries.

22

Comparing
cross-platform
approaches
While the various cross-platform frameworks available today — Ionic,
Xamarin, Flutter, and React Native — may appear similar on the
surface, there are a lot of differences between them that you’ll realize
as you dig in.

To summarize very briefly, Ionic Framework and
tooling are all based on open web technologies,
from the languages that you use to build Ionic
apps (HTML, CSS, JavaScript), to the standards-
based UI components running inside your app.
In that sense, when you choose Ionic, you’re

really choosing the web — the most time-tested,
universal runtime in the world. You build with the
web, and we give you the tools and component
libraries to help you succeed.

COMPARING CROSS-PLATFORM APPROACHES

Most of the other frameworks add some level of custom UI rendering to work
across platforms. For example, React Native translates your JavaScript code
into native code at runtime, and uses the native UI elements provided by iOS
and Android. Flutter works with the Dart language and uses its own custom
graphics engine to work across devices.

Each approach has its benefits and drawbacks, which typically come down
to debates about performance, code sharing, customization, and portability.

There’s a lot to cover here, so if you’re interested in learning more, check out
our comparison guides: Ionic React vs. React Native and Ionic vs Flutter.

23

COMPARING CROSS-PLATFORM APPROACHES

https://ionicframework.com/enterprise/resources/articles/ionic-vs-react-native-a-comparison-guide
https://ionicframework.com/enterprise/resources/articles/ionic-vs-flutter-comparison-guide

Ionic is best known for the popular open source Ionic Framework, a rich library
of front-end building blocks and UI components that make it easy to design
beautiful, high-performance mobile and Progressive Web Apps (or PWAs)
using web technologies like HTML, CSS, and JavaScript.

On top of that, Ionic an end-to-end platform to help professional developers
and teams speed up and simplify app development and delivery across
mobile, desktop, and the web.

Today, Ionic is powering apps for major brands like Amtrak, AAA, GE, Burger
King, and Target, along with popular consumer apps like Sworkit, Shipt, and
Untappd. Ionic is backed by a vibrant community with millions of developers
all over the world, and thousands of global meetups, forums, and community
driven events that make it easy to learn and grow with our platform.

Ready to get started? Check out our world-class developer docs for install
instructions. Or view our Quick Start video on YouTube.

Here’s some additional reading if you want to learn more:

• What is Cross-Platform App Development

• What is Hybrid App Development

• What is a Progressive Web App and Why Do You Need One

• The Architect’s Guide to Progressive Web Apps

• Evaluating Ionic for Enterprise Development

• Ionic vs. React Native: A Comparison Guide

• Ionic vs Flutter: A Comparison Guide

24

About Ionic Additional resources

https://ionicframework.com/enterprise/customers
https://ionicframework.com/docs/
https://youtu.be/YwSzqeBchEc
https://ionicframework.com/enterprise/resources/articles/what-is-cross-platform-app-development
https://ionicframework.com/enterprise/resources/articles/what-is-hybrid-app-development
https://ionicframework.com/enterprise/resources/articles/what-is-a-progressive-web-app-and-why-you-need-one
https://ionicframework.com/articles/pwa-architects-guide
https://ionicframework.com/enterprise/resources/whitepapers/evaluating-ionic-for-enterprise-development
https://ionicframework.com/enterprise/resources/articles/ionic-vs-react-native-a-comparison-guide
https://ionicframework.com/enterprise/resources/articles/ionic-vs-flutter-comparison-guide

